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2 Abstract

We present a hybrid approach that extends AILS-II [5] along two complementary directions: (i) LLM-guided adaptive control
discovery using Evolution-of-Heuristics (EoH) to automatically design improved diversification—intensification mechanisms, and
(i) NPU-accelerated parallel search with cooperative elite pool management. Our methods specifically target the late-stage
search regime where discovering improvements over already high-quality solutions is the most challenging.

3 Proposed Methodology
3.1 Base Algorithm: AILS-II

We build upon AILS-II [3], leveraging its adaptive diversity control. Two parameters govern the diversification—intensification
trade-off:

* Perturbation degree (w): Dynamically adjusted (with adjustment frequency <) based on the idea distance between the
reference solution and the solution obtained after local search. The ideal distance gradually decreased during the algorithm
to shift from diversification to intensification.

* Acceptance criterion: A convergent threshold-based criterion where solutions are accepted if their cost is below 6 = f best 1
n(f — foest), with £t being the best solution in the last - iterations and f the average local search quality. The parameter
N € [Mmins Mmaz) controls relaxation, starting at 7,4, (permissive) and converging to 7,,, (restrictive).

3.2 Direction 1: LLM-Guided Adaptive Control Discovery

Motivation. While AILS-II’s hand-crafted adaptive rules achieve state-of-the-art performance, we hypothesize that automatically
discovered control mechanisms can achieve superior late-stage convergence behavior. This is critical for the BKS Challenge,
where initial solutions will already be of very high quality due to extensive runs by the organizers.

Method. We employ Evolution-of-Heuristics (EoH) [4]], a framework that uses Large Language Models to generate, mutate,
and evolve algorithmic components. To fully characterize the discovery process, we specify:

* The representation of candidate mechanisms: The LL.M generates Java functions that take as input the current search state
(iteration count, recent improvement history, current w value, solution distance statistics) and output updated values for the
perturbation degree w and acceptance threshold.

* The evaluation protocol: Candidate control rules are evaluated using a warm-start protocol, initializing from known high-
quality solutions (within 0.1-0.5% of BKS) rather than random starts. This is to ensure mechanisms are optimized for the
“endgame” where marginal improvements matter most. Fitness is measured by improvement magnitude and consistency on
training instances from the CVRPLib XL generator.

* The evolutionary operators: The LLM proposes novel functions (generation), modifies existing high-performing functions
(mutation), and combines elements from multiple successful functions (crossover). Selection is based on fitness ranking
across the candidate population.

* The integration of discovered mechanisms: Top-performing control functions replace the default AILS-II adaptive rules
for w and acceptance decisions. We aim for a general rule that can be use for all of the instances.



3.3 Direction 2: NPU-Accelerated Parallel AILS-II
Motivation. Recent advances in GPU-accelerated optimization (cuOpt [6], PDLP [1]) demonstrate that massive parallelism can
yield order-of-magnitude speedups with better exploration. We use Huawei Ascend NPUs for parallelization.
Architecture. To fully characterize the cooperative parallel search, we specify:
* The information shared: A shared elite pool maintains the k-best solutions found across all workers. Additionally, we
maintain string frequency statistics—counts of consecutive node sequences appearing in elite solutions.

* The cooperative methods: Two components operate concurrently: (A) Parallel AILS workers executing independent searches
with different seeds; (B) Path-relinking worker [3] generating intermediate solutions between elite pairs and reinjecting im-
provements into the pool.

* The communication timing: Workers contribute to the elite pool immediately upon finding a new global best. Stagnating
workers (no improvement for 7' iterations) trigger a restart. String frequencies are updated incrementally as the elite pool
evolves.

* The utilization of imported information: Knowledge transfer among workers occurs through two mechanisms: (1) Cooper-

ative restart—stagnating workers restart from a randomly selected elite solution, inheriting high-quality structure; (2) Frequency-

guided perturbation—inspired by string-based methods [2], this perturbation operator exploits the shared frequency statis-
tics to preserve high-frequency strings (likely high-quality partial structures) while targeting low-frequency edges for re-
moval/reinsertion, biasing search toward promising regions.

3.4 Integration Strategy

The two directions are complementary: LLM-discovered adaptive controls govern individual worker behavior, while the parallel
architecture provides computational scale and cooperative intensification. Configurations selected based on synthetic XL instance
performance.

4 Third-Party Components and Acknowledgments
* AILS-II [5]: Base framework (from https://github.com/INFORMSJoC/2023.0106)
* EoH Framework [4]: LLM-guided heuristic evolution
* CVRPLIib XL Generator: Training instances (organizers)

All novel components (control discovery, parallel architecture, frequency-guided perturbation) are original contributions.
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