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Abstract

This report describes a CVRP solver developed with the objective of producing competitive best-known solutions
(BKS) for standard benchmarks, in the spirit of the CVRPLIB BKS challenge. The method builds on the Hybrid Genetic
Search (HGS) framework of Vidal et al. and adds three practical components aimed at improving time-to-quality
and robustness across instance sizes: a diversified population initialization scheme, a route-clustering intensification
operator solved by lightweight sub-HGS runs in parallel, and an extended local search with adaptive cost controls. The
resulting solver preserves the overall HGS lifecycle while improving exploration and regional intensification on large
instances.

1 Motivation and Objectives
The CVRPLIB BKS challenge encourages the continuous improvement of best-known solutions on widely used CVRP
instances. In practice, success requires both high solution quality and consistent behavior across heterogeneous instance
sizes and structures. This project targets that goal by retaining a strong HGS backbone while adding mechanisms that (i)
reach good solutions earlier, (ii) intensify search in meaningful regions without exploding runtime, and (iii) use parallel
hardware effectively when available.

2 Baseline: Hybrid Genetic Search (HGS)
The solver is based on the Hybrid Genetic Search paradigm introduced by Vidal [2] and later consolidated in an
extended view of HGS components for VRP [1]. We keep the main design choices and operator sequence. Solutions
are encoded as giant tours and decoded by a Split procedure into routes. A dedicated education step (local search)
improves individuals, feasible and infeasible subpopulations are maintained with diversity control, and penalties are
dynamically adapted to balance feasibility and exploration.

The developments described below do not replace this architecture. Instead, they act as additional diversifica-
tion/intensification layers that can be turned on selectively and tuned with explicit parameters.

3 Diversified Initialization: Better Time-to-Quality
On large instances, a purely random initial population can be diverse but needs many generations before reaching a
quality level where intensification becomes productive. To mitigate this warm-up cost while preserving diversity, the
initial population is built from a mixture of constructions.

A first fraction of the population is generated exactly as in the classical HGS, i.e., as random giant tours. The second
fraction uses a randomized variant of a savings-based construction: savings values are perturbed through randomized
weights and tie-breaking so that multiple runs yield structurally different (yet typically good) solutions. The last fraction
uses a sweep-based construction: customers are ordered by their polar angle around the depot, but the angles are
deliberately perturbed or locally shuffled so that the sweep produces different route skeletons across individuals.
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All constructed tours are passed through the same pipeline as standard individuals (Split and education, with repair
if needed), so the remainder of population management and selection remains unchanged. Empirically, this approach
yields an initial population that is simultaneously more exploitable (lower initial costs) and still diversified (different
route structures).

4 Route-Clustering Intensification with Parallel Sub-Solvers

4.1 Rationale
Many improvements in large CVRP instances are essentially regional: routes operating in the same geographic area
benefit from re-optimization together, while interactions between far-apart routes are less frequent. A global local search
can handle these interactions, but it becomes expensive to apply repeatedly if the search space is large. To address this,
we introduce a periodic, solution-dependent intensification operator that temporarily decomposes a solution into smaller
subproblems.

4.2 Centroid features and K-means clustering
Given a decoded solution (a set of routes), we compute a route-level feature: the centroid (center of gravity) of each
route based on its customers,
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Routes are then clustered using standard K-means in the two-dimensional centroid space. A fixed K is avoided: we
compute it dynamically from the number of routes, using a target number of routes per cluster (typically 3–5). This
keeps clusters sufficiently small to be solved quickly, while still allowing meaningful rearrangements inside each region.

4.3 Sub-instance generation and lightweight Sub-HGS
Each cluster induces a sub-instance formed by the union of customers contained in the cluster routes, plus the original
depot. A local indexing map (global ↔ local) is maintained so that sub-solutions can be translated back correctly.

Each sub-instance is solved by a lightweight configuration of the same HGS machinery: small populations, short
time limits, and simplified stopping criteria. Importantly, clustering is disabled inside sub-solves to avoid recursive
nesting. This yields a “nested” intensification effect without the prohibitive cost of running full HGS inside full HGS.

4.4 Parallel execution and reassembly
Sub-instances are independent, so they are solved in parallel. The operator then reassembles the optimized routes from
all clusters into a global solution and applies one global education pass. This final local search is essential: it allows
boundary corrections between clusters and reintroduces cross-cluster moves that were not allowed during sub-solves.

From an accounting standpoint, the time attributed to this operator is the wall-clock duration of the parallel phase
(not the sum of per-cluster runtimes), ensuring that the operator scales with the available cores.

4.5 When to apply
Because this operator can still be expensive, it is not applied to every offspring. Instead, it is used periodically and/or
on promising individuals, and only on instances above a minimum size threshold. The sub-solver time budget is also
scaled based on cluster size and remaining global time.

5 Local Search Extensions with Cost Control
We extend the education phase while keeping it computationally reasonable. The guiding idea is to enrich the
neighborhood landscape but compensate for this added breadth with filtering and adaptive budgeting.

Routes maintain additional metadata such as slack (capacity/duration), modification counters, and a simple priority
score. This score emphasizes routes under penalty pressure or those that have stagnated, and it is used to decide where

2



to spend local-search effort. In stable routes, the algorithm explores only a limited prefix of the correlated-neighbor
lists; during stagnation, the exploration budget is progressively expanded to restore full neighborhood coverage before
declaring convergence.

The move set is enriched with bounded-cost operators chosen to fit the granular-search philosophy of HGS. In
addition to the standard relocate/exchange/2-opt style operations from the original implementation, we include short
Or-opt relocations (segments of length 3–4), restricted cross-exchange between selected route pairs, and shallow
ejection-chain style sequences (very small depth). Each move is protected by inexpensive feasibility/slack checks to
avoid evaluating obviously infeasible insertions.

Finally, when improvement stalls, a small destroy/repair “kick” is applied. A few customers (or short segments) are
removed from high-priority routes and greedily reinserted. This perturbation is throttled by a cooldown so it does not
dominate runtime.

6 Two-Stage Parameter Optimization
Performance depends heavily on parameters and the diversity of instance characteristics. To tune robustly for the
CVRPLIB setting, we implemented a two-stage tuning procedure.

In the first stage, a coarse exploration is performed via Latin-hypercube sampling over key knobs: granularity,
population sizes, penalty update factors, clustering interval and sub-solver time, neighbor budgets, and perturbation
intensity. Configurations are evaluated on a tiered training set drawn from the X and XL families, and each configuration
is run for multiple random seeds. The run logs record best cost and elapsed time to produce a cost–runtime trade-off
view.

In the second stage, we fit a surrogate model per tier (e.g., random forests or Gaussian processes) and run Bayesian
optimization under runtime constraints to refine the search in regions that look promising. The final selection uses
Pareto efficiency and robustness criteria: profiles are retained if they remain within a target gap across tiers, and then
re-tested on unseen instances, including very large cases up to n=10001.

7 Conclusion
The solver developed in this project is a direct descendant of the Hybrid Genetic Search framework of Vidal et al.
[2, 1], augmented with components that target the practical requirements of the CVRPLIB BKS challenge. Diversified
initialization improves time-to-quality, route-level K-means clustering enables scalable regional intensification through
parallel lightweight sub-solves, and the education phase is strengthened through additional neighborhoods combined
with adaptive filters and bounded perturbations. A two-stage, tier-aware tuning workflow supports robust parameter
choices that generalize across instance sizes, from the X set to very large XL benchmarks.
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