CoBrInUS VRP

Team Members: Anmol Pahwa, Harshvardhan Shivram Ket, Miguel Jaller, Ruben Yie
Pinedo, Claudio Barbieri da Cunha, Marcos Roberto Silva

Framework:
The Adaptive Large Neighborhood Search (ALNS) metaheuristic searches through the neighborhood
by destroying and consequently rebuilding the solution thereby reconfiguring /arge portions of the
solution using specific operators that are chosen adaptively in each iteration of the algorithm based on
the performance of operators in the previous iterations, hence the name adaptive large neighborhood
search (Ropke and Pisinger, 2006). Below is a detailed description of the framework of this algorithm
along with its implementation (and validation), tailored towards generating high-quality solutions for
the synthetic distribution environments described in the previous section.

The implementation in this work follows the standard ALNS structure. [t maintains a current solution
— s, and tracks the best solution found so far — s*, initializing both from a starting configuration — s,,.
The core search proceeds iteratively over j segments, each comprising n individual iterations. The
fundamental operation within each iteration is a ruin-and-recreate cycle. This begins with the selection
of a removal and an insertion operator — 0, and o;, from predefined sets 0, and 0;, respectively. This
selection is guided by a roulette wheel mechanism employing adaptive weights that reflect the recent
historical performance of each operator (w,; 0, € 0,- and w;; 0; € 0;). The chosen removal operator
then partially destroys the current solution, removing a certain quantity of elements (ranging between
e and e) or fraction of elements (ranging between y and). Following the ruin phase, the selected

insertion operator rebuilds the solution, generating a new candidate solution s’.

A key aspect of the ALNS methodology is its adaptive learning mechanism for operator selection.
The algorithm monitors operator success within each segment using scores (1,; 0, € 0,- and 7;; 0; €
0;), which are reset at the start of every segment. In each iteration, the operator scores are updated based
on the quality and uniqueness of the solutions generated. Subsequently, at the conclusion of a segment,
the weights w,. and w; are updated based on these accumulated scores, operator usage counts (¢,; 0, €
0, and ¢;; 0; € 0;), and a reaction factor — p. This factor determines how strongly recent performance
influences the weights, while a dissipation factor of (1 — p) provides stability by retaining some
influence from previous segments. The recalculated weights then guide operator selection in the
subsequent segment.

The acceptance of the newly generated solution s’ into the search process depends on its objective
function value f relative to the current solution s and the best-known solution s*, potentially
considering solution novelty determined via a hash function h. If s” yields a better objective value than
s* (f(s") < f(s™)), it is unconditionally accepted, replacing both s and s*, and the operators used
receive the highest reward, amounting to ;. If s improves only upon the current solution (f(s*) <
f(s") < f(s)),itreplaces s, and the operators earn a standard reward of a,. To facilitate escape from
local optima, the framework also incorporates a mechanism, akin to Simulated Annealing, to accept
non-improving solutions (f(s") > f(s)). Such solutions are accepted probabilistically based on the
Boltzmann criterion, A < exp(f(s) — f(s")/Ty)(where A € [0,1] is random), with acceptance more
likely at higher temperatures — Tj. Operators leading to such accepted solutions are given a smaller
reward of g3.

The algorithm initializes this temperature at a level designed to permit acceptance of an w worse
solution, with a target probability 7. In each subsequent iteration, the temperature is reduced by a cooling
factor ¢, progressively decreasing the likelihood of accepting inferior solutions, to a minimum that

would still enable the algorithm to accept an w worse solution with a 7 probability. To prevent
stagnation, the search is periodically refocused by resetting the current solution s to the best-found
solution s* every k segments. Additionally, solution quality is further refined through an optional local
search phase applied at the end of each segment, running for m iterations using operators from a set 0.
After completing the predefined n segments, the ALNS procedure terminates, returning the best
solution s* identified.

Algorithm Adaptive Large Neighbourhood Search (ALNS)

1: Procedure ALNS (so, (j, k,n,m,o0,,0;,0,0,,0,0;¢€€ 1,0 0TTQ, p))

2: S < S, // initialise current solution — s as the initial solution — s,

3: st es // initialise best solution — s* as the current solution

4: H < {h(s)} // initialise hash list

5: T « wf(s*)/In(1/7) // initialise the current temperature based on the cooling schedule

6: for o, €0, do // initialise removal operator weights to 1

7: w, « 1

8: endfor

9: for 0; € 0; do // initialise insertion operator weights to 1

10: w; <1

11: end for

12: u <1 // initialise segment index to 1

13: whileu <] do // repeat for j segments

14: foro, € 0, do

15: pr < Wr/zreqlr W, // update removal operator probability

16: end for

17: foro; € 0;do

18: D < Wi/ZrelPi w; // update insertion operator probability

19: end for

20: foro, € 0,.do

21: ¢, <0 // set removal operator count to 0

22: T, <0 // set removal operator score to 0

23: end for

24: foro; € 0;do

25: <0 // set insertion operator count to 0

26: T, <0 // set insertion operator score to 0

27: end for

28: vel // initialise iteration index to 1

29: whilev < ndo // repeat for n iterations

30: o, fp_r o, // randomly select a removal operator

31: 0; 1& 0; // randomly select an insertion operator

32: c,<c.+1 // update removal operator count

33: cec +1 // update insertion operator count

34: A~U(0,1)

35: Aen

36: q < (1 N /1) min (2; E”S”)] // set the size of removal and insertion operation
+Amin(e, ills|)

37: s« oi(or (q, s)) // remove and insert select number of customer nodes

38: if f(s") < f(s*) then

// if the new solution is better than the best solution then

39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:

51:

52:

53:
54.
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:

s e s
s <5’
T, < T, + 0,
M < m; + 0,
elseif f(s') < f(s) then
s «5s'
if h(s) ¢ H then
T, < T, + 0,
T, < 1; + 0,
end if
else
A~U(0,1)
A&A
if 2 < exp ((2/)) then
s «5s'
if h(s) ¢ H then
T, < T, + 0,
T, < 1; + 0,
end if
end if
end if
H « H U {h(s)}
T « max(¢T, wf(s*)/In(1/1))
ve<v+1
end while
if h mod k
Se st
end if
foro, € 0, do
if ¢, # 0 then
w, < pm, /¢, + (1= p)w,
end if
end for
foro; € 0; do
if c; # 0 then
w; < pri/c; + (1 — p)w;
end if
end for
foro, € o;
s < 0,(s,m)
end for
if f(s) < f(s*) then
S* s
end if
H « H U {h(s)}
ue—u+1
end while
return s*

// update the best solution to the current solution

// update the current solution to the new solution

// update removal operator score by g,

// update insertion operator score by g,

// else if the new solution is better than the current solution then
// update the current solution to the new solution

// if the solution does not exist in the hashed tabu list

// update removal operator score by a,

// update insertion operator score by o,

// else accept new solution with a small probability

// update the current solution to the new solution
// if the solution does not exist in the hashed tabu list
// update removal operator score by a;

// update insertion operator score by o5

// add the current solution to the hash list
// update current temperature based on the cooling schedule

// update iteration index

// after every k segments reset best current solution to best solution

// update removal operator weights

// update insertion operator weights

// iteratively perform local search on the current solution

// if the current solution is better than the best solution then

// update the best solution to the current solution

// add the current solution to the hash list

// update segment index

// return the best solution

