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Framework: 
The Adaptive Large Neighborhood Search (ALNS) metaheuristic searches through the neighborhood 
by destroying and consequently rebuilding the solution thereby reconfiguring large portions of the 
solution using specific operators that are chosen adaptively in each iteration of the algorithm based on 
the performance of operators in the previous iterations, hence the name adaptive large neighborhood 
search (Ropke and Pisinger, 2006). Below is a detailed description of the framework of this algorithm 
along with its implementation (and validation), tailored towards generating high-quality solutions for 
the synthetic distribution environments described in the previous section. 

The implementation in this work follows the standard ALNS structure. It maintains a current solution 
– 𝑠, and tracks the best solution found so far – 𝑠∗, initializing both from a starting configuration – 𝑠". 
The core search proceeds iteratively over 𝑗 segments, each comprising 𝑛 individual iterations. The 
fundamental operation within each iteration is a ruin-and-recreate cycle. This begins with the selection 
of a removal and an insertion operator – 𝑜# and 𝑜$, from predefined sets 𝒐𝒓 and 𝒐𝒊, respectively. This 
selection is guided by a roulette wheel mechanism employing adaptive weights that reflect the recent 
historical performance of each operator (𝑤#; 𝑜# ∈ 𝒐𝒓 and 𝑤$; 𝑜$ ∈ 𝒐𝒊). The chosen removal operator 
then partially destroys the current solution, removing a certain quantity of elements (ranging between 
𝑒 and 𝑒) or fraction of elements (ranging between 𝜇 and	𝜇). Following the ruin phase, the selected 
insertion operator rebuilds the solution, generating a new candidate solution 𝑠′. 

A key aspect of the ALNS methodology is its adaptive learning mechanism for operator selection. 
The algorithm monitors operator success within each segment using scores (𝜋#; 𝑜# ∈ 𝒐𝒓 and 𝜋$; 𝑜$ ∈
𝒐𝒊), which are reset at the start of every segment. In each iteration, the operator scores are updated based 
on the quality and uniqueness of the solutions generated. Subsequently, at the conclusion of a segment, 
the weights 𝑤# and 𝑤$ are updated based on these accumulated scores, operator usage counts (𝑐#; 𝑜# ∈
𝒐𝒓 and 𝑐$; 𝑜$ ∈ 𝒐𝒊), and a reaction factor – 𝜌. This factor determines how strongly recent performance 
influences the weights, while a dissipation factor of (1 − 𝜌) provides stability by retaining some 
influence from previous segments. The recalculated weights then guide operator selection in the 
subsequent segment. 

The acceptance of the newly generated solution 𝑠' into the search process depends on its objective 
function value 𝑓 relative to the current solution 𝑠 and the best-known solution 𝑠∗, potentially 
considering solution novelty determined via a hash function ℎ. If 𝑠' yields a better objective value than 
𝑠∗ (𝑓(𝑠'	) < 𝑓(𝑠∗	)), it is unconditionally accepted, replacing both 𝑠 and 𝑠∗, and the operators used 
receive the highest reward, amounting to 𝜎(. If 𝑠' improves only upon the current solution (𝑓(𝑠∗	) 	≤
𝑓(𝑠'	) < 	𝑓(𝑠	)), it replaces 𝑠, and the operators earn a standard reward of 𝜎). To facilitate escape from 
local optima, the framework also incorporates a mechanism, akin to Simulated Annealing, to accept 
non-improving solutions (𝑓(𝑠'	) > 𝑓(𝑠	)). Such solutions are accepted probabilistically based on the 
Boltzmann criterion, 𝜆 < exp(𝑓(𝑠) − 𝑓(𝑠') 𝑇*⁄ )(where 𝜆	 ∈ [0,1] is random), with acceptance more 
likely at higher temperatures – 𝑇*. Operators leading to such accepted solutions are given a smaller 
reward of 𝜎+. 

The algorithm initializes this temperature at a level designed to permit acceptance of an 𝜔 worse 
solution, with a target probability 𝜏. In each subsequent iteration, the temperature is reduced by a cooling 
factor 𝜑, progressively decreasing the likelihood of accepting inferior solutions, to a minimum that 



would still enable the algorithm to accept an 𝜔 worse solution with a 𝜏 probability. To prevent 
stagnation, the search is periodically refocused by resetting the current solution 𝑠 to the best-found 
solution 𝑠∗ every 𝑘 segments. Additionally, solution quality is further refined through an optional local 
search phase applied at the end of each segment, running for 𝑚 iterations using operators from a set 𝒐𝒍. 
After completing the predefined 𝑛 segments, the ALNS procedure terminates, returning the best 
solution 𝑠∗ identified.  
 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦	Adaptive	Large	Neighbourhood	Search	(ALNS) 

1:  𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞	ALNSF𝑠!, I𝑗, 𝑘, 𝑛,𝑚, 𝒐𝒓, 𝒐𝒊, 𝒐𝒍, 𝜎!, 𝜎", 𝜎#, 𝑒, 𝑒, 𝜇, 𝜇	, 𝜔, 𝜔, 𝜏, 𝜏, 𝜑, 𝜌VW 

2:  𝑠 ← 𝑠! //	initialise	current	solution − 𝑠	as	the	initial	solution − 𝑠! 

3:  𝑠∗ ← 𝑠 //	initialise	best	solution − 𝑠∗	as	the	current	solution	 

4:   𝐻 ← {ℎ(𝑠)}  //	initialise	hash	list 

5:  𝑇 ← 𝜔𝑓(𝑠∗)/ ln(1/𝜏) //	initialise	the	current	temperature	based	on	the	cooling	schedule 

6:  𝐟𝐨𝐫	𝑜& ∈ 𝒐𝒓	𝐝𝐨 //	initialise	removal	operator	weights	to	1 

7:  𝑤&	 ← 1  

8:  𝐞𝐧𝐝	𝐟𝐨𝐫  

9:  𝐟𝐨𝐫	𝑜' ∈ 𝒐𝒊	𝐝𝐨 //	initialise	insertion	operator	weights	to	1 

10: 𝑤' ← 1  

11: 𝐞𝐧𝐝	𝐟𝐨𝐫  

12: 𝑢		 ← 1 //	initialise	segment	index	to	1 

13:  𝐰𝐡𝐢𝐥𝐞	𝑢 ≤ 𝑗	𝐝𝐨 //	repeat	for	𝑗	segments 

14: 𝐟𝐨𝐫	𝑜& ∈ 𝒐𝒓	𝐝𝐨	  

15:  𝑝%	 ← 𝑤% ∑ 𝑤%&∈)%⁄   //	update	removal	operator	probability 

16:  𝐞𝐧𝐝	𝐟𝐨𝐫  

17:  𝐟𝐨𝐫	𝑜' ∈ 𝒐𝒊	𝐝𝐨  

18:  𝑝& ← 𝑤& ∑ 𝑤&&∈)&⁄   //	update	insertion	operator	probability 

19:  𝐞𝐧𝐝	𝐟𝐨𝐫  

20: 𝐟𝐨𝐫	𝑜& ∈ 𝒐𝒓	𝐝𝐨	  

21:  𝑐% ← 0 //	set	removal	operator	count	to	0 

22:  𝜋% ← 0 //	set	removal	operator	score	to	0 

23:  𝐞𝐧𝐝	𝐟𝐨𝐫  

24: 𝐟𝐨𝐫	𝑜' ∈ 𝒐𝒊	𝐝𝐨  

25:  𝑐& ← 0 //	set	insertion	operator	count	to	0 

26:  𝜋& ← 0 //	set	insertion	operator	score	to	0 

27:  𝐞𝐧𝐝	𝐟𝐨𝐫  

28:  𝑣 ← 1 //	initialise	iteration	index	to	1 

29:  𝐰𝐡𝐢𝐥𝐞	𝑣 ≤ 𝑛	𝐝𝐨 //	repeat	for	𝑛	iterations 

30:  𝑜&
*𝒑𝒓xy 𝒐𝒓 //	randomly	select	a	removal	operator 

31:  𝑜'
*𝒑𝒊xy 𝒐𝒊 //	randomly	select	an	insertion	operator 

32:  𝑐% ← 𝑐% + 1 //	update	removal	operator	count 

33:  𝑐& ← 𝑐&	 + 1 //	update	insertion	operator	count 

34: Λ	~	𝑈(0,1)  

35:  𝜆	
*
←Λ  

36:  𝑞 ← �
(1 − 𝜆)min I𝑒, 𝜇‖𝑠‖V
+𝜆min(𝑒, 𝜇‖𝑠‖)	

�
+

 //	set	the	size	of	removal	and	insertion	operation 

37:  𝑠* ← 𝑜'�𝑜&(𝑞, 𝑠)� //	remove	and	insert	select	number	of	customer	nodes 

38:  𝐢𝐟	𝑓(𝑠,) < 𝑓(𝑠∗)	𝐭𝐡𝐞𝐧 //	if	the	new	solution	is	better	than	the	best	solution	then 



39:  𝑠∗ ← 𝑠′ //	update	the	best	solution	to	the	current	solution 

40:  𝑠	 ← 𝑠, //	update	the	current	solution	to	the	new	solution 

41:  𝜋% ← 𝜋% + 𝜎! //	update	removal	operator	score	by	𝜎# 

42:  𝜋& ← 𝜋&	 + 𝜎! //	update	insertion	operator	score	by	𝜎# 

43:  𝐞𝐥𝐬𝐞	𝐢𝐟	𝑓(𝑠,) < 𝑓(𝑠)	𝐭𝐡𝐞𝐧 //	else	if	the	new	solution	is	better	than	the	current	solution	then 

44:  𝑠	 ← 𝑠, //	update	the	current	solution	to	the	new	solution 

45:  𝐢𝐟	ℎ(𝑠) ∉ 𝐻	𝐭𝐡𝐞𝐧 //	if	the	solution	does	not	exist	in	the	hashed	tabu	list 

46:  𝜋% ← 𝜋% + 𝜎" //	update	removal	operator	score	by	𝜎$ 

47:  𝜋& ← 𝜋&	 + 𝜎" //	update	insertion	operator	score	by	𝜎$ 

48:  𝐞𝐧𝐝	𝐢𝐟  

49:  𝐞𝐥𝐬𝐞 //	else	accept	new	solution	with	a	small	probability 

50:  Λ	~	𝑈(0,1)  

51:  𝜆	
*
←Λ  

52:  𝐢𝐟	𝜆 < exp I-(/)+-1/
*2

3
V 	𝐭𝐡𝐞𝐧   

53:  𝑠	 ← 𝑠, //	update	the	current	solution	to	the	new	solution 

54: 𝐢𝐟	ℎ(𝑠) ∉ 𝐻	𝐭𝐡𝐞𝐧 //	if	the	solution	does	not	exist	in	the	hashed	tabu	list 

55:  𝜋% ← 𝜋% + 𝜎# //	update	removal	operator	score	by	𝜎% 

56:  𝜋& ← 𝜋&	 + 𝜎# //	update	insertion	operator	score	by	𝜎% 

57:  𝐞𝐧𝐝	𝐢𝐟  

58:  𝐞𝐧𝐝	𝐢𝐟  

59:  𝐞𝐧𝐝	𝐢𝐟  

60:  𝐻	 ← 𝐻 ∪ {ℎ(𝑠)} //	add	the	current	solution	to	the	hash	list 

61:  𝑇	 ← max�𝜑𝑇,𝜔𝑓(𝑠∗)/ ln(1/𝜏)� //	update	current	temperature	based	on	the	cooling	schedule 

62:  𝑣		 ← 𝑣 + 1 //	update	iteration	index 

63: 𝐞𝐧𝐝	𝐰𝐡𝐢𝐥𝐞  

64:  𝐢𝐟	ℎ	mod	𝑘 //	after	every	𝑘	segments	reset	best	current	solution	to	best	solution 

65: 𝑠 ← 𝑠∗  

66: 𝐞𝐧𝐝	𝐢𝐟  

67:  𝐟𝐨𝐫	𝑜& ∈ 𝒐𝒓	𝐝𝐨 //	update	removal	operator	weights 

68:  𝐢𝐟	𝑐% ≠ 0	𝐭𝐡𝐞𝐧  

69:  𝑤% ← 𝜌𝜋%/𝑐% 	+ (1 − 𝜌)𝑤%  

70:  𝐞𝐧𝐝	𝐢𝐟  

71:  𝐞𝐧𝐝	𝐟𝐨𝐫  

72:  𝐟𝐨𝐫	𝑜' ∈ 𝒐𝒊	𝐝𝐨 //	update	insertion	operator	weights 

73:  𝐢𝐟	𝑐& ≠ 0	𝐭𝐡𝐞𝐧  

74:  𝑤& ← 𝜌𝜋&/𝑐& 	+ (1 − 𝜌)𝑤&  

75:  𝐞𝐧𝐝	𝐢𝐟  

76:  𝐞𝐧𝐝	𝐟𝐨𝐫  

77: 𝐟𝐨𝐫	𝑜5 ∈ 𝝄𝒍	 //	iteratively	perform	local	search	on	the	current	solution 

78:  𝑠 ← 𝑜5(𝑠,𝑚)  

79:  𝐞𝐧𝐝	𝐟𝐨𝐫  

80:  𝐢𝐟	𝑓(𝑠) < 𝑓(𝑠∗)	𝐭𝐡𝐞𝐧 //	if	the	current	solution	is	better	than	the	best	solution	then 

81:  𝑠∗ ← 𝑠 //	update	the	best	solution	to	the	current	solution 

82: 𝐞𝐧𝐝	𝐢𝐟  

83: 𝐻 ← 𝐻 ∪ {ℎ(𝑠)}	 //	add	the	current	solution	to	the	hash	list 

84:  𝑢 ← 𝑢 + 1 //	update	segment	index 

85:  𝐞𝐧𝐝	𝐰𝐡𝐢𝐥𝐞  

86:  𝐫𝐞𝐭𝐮𝐫𝐧	𝑠∗ //	return	the	best	solution 

 


